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1 Basics of noise and signal-to-noise in electronics

Fluctuations in physical quantities are an essential aspect of our world. These arise
because of sampling, such as when we flip a coin N times and note that the variance
is N , or the standard deviation is

√
N . They also arise from thermal activation,

such as the diffusive motion of a molecule in solution. We will consider two of these
sources within the context of electrical circuits. We ignore the large zoo of so called
”technical” noise sources that result from imperfections in materials (noting that
defects themselves in solids result from thermal fluctuations).

1.1 Fluctuations from resistance

Lossy devices like resistors always have a noise associated with the random move-
ment of charge carriers. This can be expressed in a general way in terms of the
fluctuation-dissipation theorem that relates the loss in energy in a device to the
level of fluctuation in the transport of a quantity, such a charge. Thus for the case
of electrical circuits, an initial current through a closed loop that contains a resistor
will rapidly go toward zero because of the resistance. This occurs because the re-
sistance dissipates electrical energy, turning it into heat (Joule heating). However,
there is a random fluctuating current flow through the resistor that is caused by the
thermal fluctuations of the electrons in the resistor. This is called Johnson noise. It
has zero mean and a variance δI2J given by value of the current, is

δI2J =
4kBT∆ν

R
. (1.1)

A complementary view is to look at the voltage in an open circuit across the resistor
(Figure 1). Here the variance of the voltage noise is

δV 2
J = 4kBTR∆ν. (1.2)

. Note that a resistor also has a nonzero capacitance between the leads, denoted
C. The parallel combination of R and C will lead to a low pass filter with time
constant RC. Thus the bandwidth will be limited to a maximum of ∆ν ≈ 1/RC.
A more precise estimate can be found by equating the decrement in power for a RC
low-pass filter with ∆ν, i.e.,

∆ν =
1

2π

∫ ∞
0

dω
1

1 + (ω/RC)2
=

1

4RC
. (1.3)

Thus the variance of the voltage noise can also be expressed as

δV 2
J = 4kBTR

1

4RC
=
kBT

C
(1.4)

1



which is interesting, and a bit intuitive, as capacitance corresponds to a length scale,
say L, so that the noise varies like one over the size of the system, i.e., δV 2

J ∝ 1/L.
Another way to derive the expression for the noise voltage is through equipar-

tition, where we equate the fluctuations in the energy stored in the capacitor with
the thermal energy for one degree of freedom. Thus

1

2
CδV 2

J =
1

2
kBT (1.5)

and we again find

δV 2
J = 4kBTR

1

4RC
=
kBT

C
. (1.6)

How big is this? For a typical resistor, such as the ones we use in class, C ≈ 10
picoFarads, so

δV 2 =
kBT

e

e

C
≈ 2.5x10−2Volts

1.6x10−19Coulombs

1x10−11Farads
≈ 4x10−10(Volts)2 (1.7)

where e is the elementary electronic charge. The standard deviation, of root-mean-
square value of the fluctuations, is δV ≈ 2x10−5 Volts, or 20 µV. This sets a scale
for voltage noise added by a resistor.

1.2 Fluctuations from counting

A second source of noise is the shot effect. In electronics shot noise originates from
the discrete nature of electric charge. Shot noise also occurs in photon counting
in optical devices, where shot noise is associated with the particle nature of light.
If we measure N photons, we expect that number to vary by δN2 ∝ N . For a
photocurrent Ip, the variance is

δI2p = 2eIp∆ν. (1.8)

1.3 Detecting photons in the shot-noise limit

Ideally, a detector system should be limited by the statistics of the signal, say the
variation in light intensity from the shot effect, and not by a thermal noise source.
Let us explore this using the Current-to-Voltage Op-Amp circuit with a photodiode
as the source (Figure 2), the addition of fluctuating input current for the shot
noise, and a second, independent fluctuating thermal noise source from the feedback
resistance (Figure 3). This pulls a lot of material together and allows us to calculate
an essential quantity for any measurement, i.e., the signal-to-noise ratio (S/N). For
the detector, the magnitude of the output voltage from the signal Ip is

Vsignal = | −RfIp| = RfIp. (1.9)

The RMS of the fluctuating output from the two noise currents is

δVnoise = Rf

√
δI2p + δI2J = Rf

√√√√2eIp∆ν +
4kBT∆ν

Rf

=

√√√√2eIpRf∆ν

(
1 +

2kBT/e

IpRf

)
(1.10)
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where we recall that variances add in quadrature. The signal-to-noise ratio is

S

N
≡ Vsignal
δVnoise

=
RfIp

Rf

√
2eIp∆ν

(
1 + 2kBT/e

IpRf

) =

√√√√ Ip

2e∆ν
(
1 + 2kBT/e

IpRf

) (1.11)

and is plotted in Figure 4. If we want to make the result independent of the thermal
noise from the resistor, we must enforce the inequality Vsignal = IpRf >> 2kBT/e.
The latter quantity is just 50 mV at room temperature. This defines a voltage
scale based on fundamentals. It requires that we use a bright enough light or a
large enough feedback resistor, Rf , recalling of course that any capacitance in the
feedback loop, Cf , will limit the bandwidth. In this limit the signal-to-noise ratio
becomes

S

N

−−−−−−−−−−−→
IpRf � 2kBT/e

√
Ip

2e∆ν

−−−−−−−−−−−−−−−−→
maximum bandwidth

√
2RfIp

Cf

e
. (1.12)

Thus the S/N increases as the square root of the signal strength and, from the
capacitance term, as the square root of the size of the system.
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